

Cryptographic Engineering

Elliptic-Curve Arithmetic

Ruben Niederhagen (based on content by Peter Schwabe)

Department of Mathematics and Computer Science (IMADA)

- Let G be a cyclic, finite, abelian Group (written additively) and let P be a generator of G.
- Alice chooses random $a \in \{0, ..., |\mathcal{G}| 1\}$, computes aP, sends to Bob.
- Bob chooses random $b \in \{0, \dots, |\mathcal{G}| 1\}$, computes bP, sends to Alice.
- Alice computes joint key a(bP).
- Bob computes joint key b(aP).
- Discrete logarithm problem (DLP) in \mathcal{G} : given $kP \in \mathcal{G}$ and P, find k.
- Solving the DLP breaks security of Diffie-Hellman.

Groups with hard DLP:

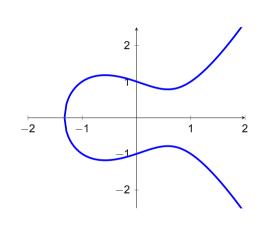
- Traditional answer: \mathbb{Z}_p^* with large prime-order subgroup.
- Modern answer: Elliptic curve over \mathbb{F}_q with large prime-order subgroup.
- Sophisticated answer (not in this lecture): hyperelliptic curves of genus 2.

Let K be a field and let $a_1, a_2, a_3, a_4, a_6 \in K$. Then the following equation defines an elliptic curve \mathcal{E} :

$$\mathcal{E}: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

(if the discriminant Δ is not equal to zero).

This equation is called the Weierstrass form of an elliptic curve.

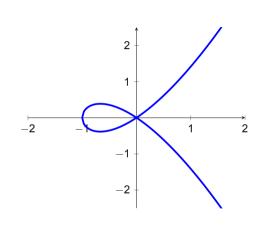


Let K be a field and let $a_1, a_2, a_3, a_4, a_6 \in K$. Then the following equation defines an elliptic curve \mathcal{E} :

$$\mathcal{E}: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

(if the discriminant \triangle is not equal to zero).

This equation is called the Weierstrass form of an elliptic curve.

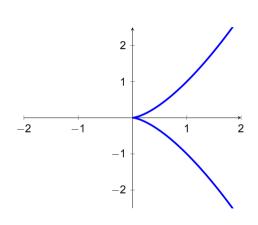


Let K be a field and let $a_1, a_2, a_3, a_4, a_6 \in K$. Then the following equation defines an elliptic curve \mathcal{E} :

$$\mathcal{E}: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

(if the discriminant Δ is not equal to zero).

This equation is called the Weierstrass form of an elliptic curve.



Let K be a field and let $a_1, a_2, a_3, a_4, a_6 \in K$. Then the following equation defines an elliptic curve \mathcal{E} :

$$\mathcal{E}: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

(if the discriminant Δ is not equal to zero).

This equation is called the Weierstrass form of an elliptic curve.

Characteristic \neq 2, 3:

If $\text{char}(K) \neq 2,3$ (e.g., $K = \mathbb{F}_p, p > 3)$ we can use a simplified equation:

$$\mathcal{E}: \mathbf{y}^2 = \mathbf{x}^3 + \mathbf{a}\mathbf{x} + \mathbf{b}$$

Characteristic 2:

If char(K)=2 (e.g., $K=\mathbb{F}_{2^n}$) we can (usually) use a simplified equation:

$$\mathcal{E}: y^2 + xy = x^3 + ax^2 + b$$

Setup for cryptography:

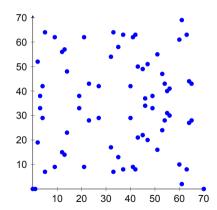
- Choose $K = \mathbb{F}_q$.
- Consider the set of \mathbb{F}_q -rational points:

$$E(\mathbb{F}_q) = \{(x, y) \in \mathbb{F}_q \times \mathbb{F}_q : y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6\} \cup \{\mathcal{O}\}$$

- The element \mathcal{O} is the "point at infinity".
- This set forms a group (together with addition law).
- Order of this group: $|E(\mathbb{F}_q)| pprox |\mathbb{F}_q|$

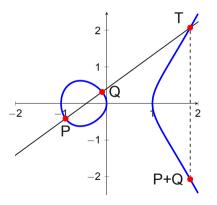
Example curve: $y^2 = x^3 - x$ over \mathbb{F}_{71}

Graph of E over \mathbb{F}_{71} :



Example curve: $y^2 = x^3 - x$ over \mathbb{R}

Graph of *E* over \mathcal{R} :



Addition of Points:

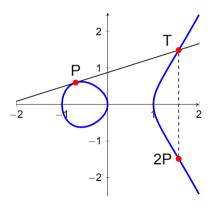
Add points P and Q:

- Compute line through the two points.
- Determine third intersection $T = (x_T, y_T)$ with the elliptic curve.
- Result of the addition:

$$P+Q=(x_T,-y_T).$$

Example curve: $y^2 = x^3 - x$ over \mathbb{R}

Graph of *E* over \mathcal{R} :



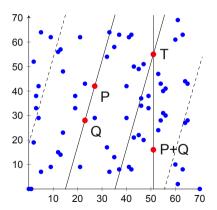
Doubling of Points:

Double the point *P*:

- Compute Compute the tangent on *P*.
- Determine second intersection $T = (x_T, y_T)$ with the elliptic curve.
- Result of the doubling: $2P = (x_T, -y_T)$.

Example curve: $y^2 = x^3 - x$ over \mathbb{F}_{71}

Graph of E over \mathbb{F}_{71} :



Addition of Points:

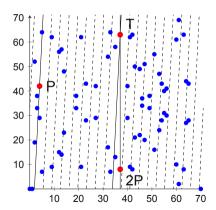
Add points P and Q:

- Compute line through the two points.
- Determine third intersection $T = (x_T, y_T)$ with the elliptic curve.
- Result of the addition:

$$P+Q=(x_T,-y_T).$$

Example curve: $y^2 = x^3 - x$ over \mathbb{F}_{71}

Graph of E over \mathbb{F}_{71} :



Doubling of Points:

Double the point *P*:

- Compute Compute the tangent on *P*.
- Determine second intersection $T = (x_T, y_T)$ with the elliptic curve.
- Result of the doubling: $2P = (x_T, -y_T)$.

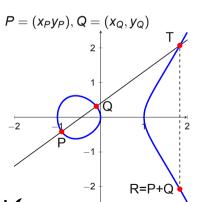
Curve equation: $y^2 = x^3 + ax + b$

Point addition:

$$P=(x_Py_P), Q=(x_Q,y_Q)$$

Curve equation: $y^2 = x^3 + ax + b$

Point addition:



$$y = \lambda x + b$$

$$\lambda = \frac{y_Q - y_P}{x_Q - x_P}$$

$$y_P = \lambda x_P + b$$

$$b = y_P - \lambda x_P$$

$$y = \lambda x + y_P - \lambda x_P$$

$$y = \lambda (x - x_P) + y_P$$

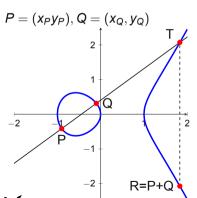
$$(\lambda (x - x_P) + y_P)^2 = x^3 + ax + b$$

$$x^3 - \lambda^2 x^2 + (a + 2\lambda^2 x_P - 2\lambda y_P)x + b - (\lambda x_P - y_P)^2 = 0$$

Group law in formulas:

Curve equation: $y^2 = x^3 + ax + b$

Point addition:



Vieta's formula:

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

For roots r_1, r_2, \ldots, r_n we have:

$$r_1+r_2+\cdots+r_n=-\frac{a_{n-1}}{a_n}$$

$$x_P + x_Q + x_T = \lambda^2$$

$$x_T = x_R = \lambda^2 - x_P - x_Q$$

Line equation:

$$\mathbf{y}_T = \lambda(\mathbf{x}_T - \mathbf{x}_P) + \mathbf{y}_P$$

$$y_R = -y_T = \lambda(x_P - x_R) - y_P$$

Curve equation: $y^2 = x^3 + ax + b$

Point addition:

$$P = (x_P y_P), Q = (x_Q, y_Q)$$

 $\rightarrow P + Q = R = (x_R, y_R)$ with

$$x_{R} = \left(\frac{y_{Q} - y_{P}}{x_{Q} - x_{P}}\right)^{2} - x_{P} - x_{Q}$$

$$y_R = \left(\frac{y_Q - y_P}{x_Q - x_P}\right)(x_P - x_R) - y_P$$

Curve equation: $y^2 = x^3 + ax + b$

Point addition:

$$P = (x_P y_P), Q = (x_Q, y_Q)$$

 $\rightarrow P + Q = R = (x_R, y_R)$ with

$$X_{R} = \left(\frac{y_{Q} - y_{P}}{X_{Q} - X_{P}}\right)^{2} - X_{P} - X_{Q}$$

$$y_R = \left(\frac{y_Q - y_P}{x_Q - x_P}\right)(x_P - x_R) - y_P$$

Point doubling:

$$P = (x_P y_P)$$

 $\rightarrow 2P = (x_R, y_R)$ with

$$x_R = \left(\frac{3x_P^2 + a}{2y_P}\right)^2 - 2x_P$$

$$y_R = \left(\frac{3x_P^2 + a}{2y_P}\right)(x_P - x_R) - y_P$$

- Neutral element is O.
- Inverse of a point (x, y) is (x, -y).
- Note: Formulas don't work for P + (-P) and also don't work for \mathcal{O} .
- Need to distinguish these cases!
- "Uniform" addition law in Hışıl's Ph.D. thesis¹, Section 5.5.2:
 - · Move special cases to other points.
 - · Not safe to use on arbitrary input points!
- Formulas for curves over \mathbb{F}_{2^k} look slightly different, but same special cases.

¹http://eprints.qut.edu.au/33233/

Security requirements for ECC:

- $\ell = |E(\mathbb{F}_q)|$ must have large prime-order subgroup.
- For *n* bits of security we need 2*n*-bit prime-order subgroup.
- It must be impossible to transfer DLP to less secure groups:
 - ℓ must not be equal to q.
 - We need $\ell \mid q^k 1$ for large k.

Finding a curve:

- Fix finite field \mathbb{F}_q of suitable size.
- Fix curve parameter a
 (quite common: a = -3).
- Pick curve parameter b until E fulfills desired properties.
- This requires efficient "point counting".
- This requires efficient factorization or primality proving.

"The nice thing about standards is that you have so many to choose from."

— Andrew S. Tanenbaum

- Various standardized curves, most well-known: NIST curves:
 - Big-prime field curves with 192, 224, 256, 384, and 521 bits.
 - Binary curves with 163, 233, 283, 409, and 571 bits.
 - Binary Koblitz curves with 163, 233, 283, 409, and 571 bits.
- SECG curves (Certicom), prime-field and binary curves.
- Brainpool curves (BSI), only prime-field curves.
- FRP256v1 (ANSSI), one prime-field curve (256 bits).
- Curve25519 (Bernstein; RFC 7748, FIPS 186-5 draft 2019), prime-field curve.

Curves over big-prime fields:

- Many fields of a given size
 many curves.
- Efficient in software (can use hardware multipliers).
- · Less efficient in hardware.

Curves over binary fields:

- Important for security: Exponent k of \mathbb{F}_{p^k} has to be prime.
- Not many fields (not that many curves).
- More efficient in hardware.
- Efficient in software only on some microarchitectures.
- Hard to implement securely in software on some other microarchitectures.

Putting it all together:

- Choose security level (e.g., 128 bits).
- Decide whether you want binary or big-prime field arithmetic; let's say big prime.
- Pick corresponding standard curve, e.g., NIST-P256.
- · Implement field arithmetic.
- Implement ECC addition and doubling.
- Implement scalar multiplication ("double and add" next lecture).
- You're done with BAD (!) ECDH software.

- Adding $P = (x_P, y_P)$ and $Q = (x_Q, y_Q)$ needs an inversion in \mathbb{F}_q .
- Inversions are expensive.
- Constant-time inversions are even more expensive.

Solution — projective coordinates:

- Store fractions of elements of \mathbb{F}_q , invert only once at the end.
- Represent points in projective coordinates:

$$P = (X_P : Y_P : Z_P)$$
 with $x_P = X_P/Z_P$ and $y_P = Y_P/Z_P$.

- The point (1 : 1 : 0) is the point at infinity.
- Also possible weighted projective coordinates:
 - Jacobian coordinates: $P = (X_P : Y_P : Z_P)$ with $x_P = X_P/Z_P^2$ and $y_P = Y_P/Z_P^3$.
 - López-Dahab coordinates: $P = (X_P : Y_P : Z_P)$ with $x_P = X_P/Z_P$ and $y_P = Y_P/Z_P^2$. (for binary curves)
- Important: Never send projective representation, always convert to affine!

Addition of P + Q:

- If $P = \mathcal{O}$ return Q.
- Else if $Q = \mathcal{O}$ return P.
- Else if *P* = Q call doubling routine.
- Else if P = -Q return \mathcal{O} .
- · Else use addition formulas.
- Constant-time implementations of this are hard.
- Good news: Can avoid the checks when computing $k \cdot P$ and $k < |\mathcal{E}(\mathbb{F}_q)|$.
- Bad news: Side-channel countermeasures use $k > |E(\mathbb{F}_q)|$.
- More bad news: Doesn't work for multi-scalar multiplication (next lecture).
- Baseline: Simple implementations are likely to be wrong or insecure!

Doubling *P*:

- If $P = \mathcal{O}$ return P.
- Else if $y_P = 0$ return \mathcal{O} .
- Else use doubling formulas.

- Use Montgomery curve: $E_M : By^2 = x^3 + Ax^2 + x$.
- Use x-coordinate-only differential addition chain ("Montgomery ladder", next lecture).
- Advantages:
 - · Works on all inputs, no special cases.
 - Very regular structure, easy to protect against timing attacks.
 - Point compression/decompression for free.
 - · Easy to implement, harder to screw up in hard-to-detect ways.
 - Simple implementations are likely to be correct and secure.
- Disadvantages:
 - Not all curves can be converted to Montgomery shape.
 - Always have a cofactor of at least 4.
 - Ladders on general Weierstrass curves are much less efficient.
 - We only get the *x* coordinate of the result, tricky for signatures.
 - Can reconstruct *y*, but that involves some additional cost.

Solution II.B: (Twisted) Edwards Curves

- Edwards, 2007: New form for elliptic curves ("Edwards curves").
- Bernstein, Lange, 2007: Very fast addition and doubling on these curves.
- Bernstein, Birkner, Joye, Lange, Peters, 2008:
 Generalize the idea to "twisted Edwards curves".
- Core advantage of (twisted) Edwards curves complete group law:
 - No need to handle special cases.
 - · No "point at infinity" to work with.
- Can speed up doubling, but addition formulas work for P + P.
- Efficient transformation from Weierstrass to (twisted) Edwards only for some curves.
- Always efficient: Transformation between Montgomery and twisted Edwards curves.
- Again: Simple implementations are likely to be correct and secure.
- Disadvantage: Always have a cofactor of at least 4.

So, what's the deal with the cofactor?

- Protocols need to be careful to avoid subgroup attacks.
- Monero screwed this up, which allowed double-spending.
- Elegant solution: "Ristretto" encoding based on Hamburg's "Decaf", see:

https://ristretto.group/.

- Bosma, Lenstra, 1995: Complete group law for Weierstrass curves.
- Problem: Extremely inefficient.
- Renes, Costello, Batina, 2016: Fast complete group law for Weierstrass curves.
- Less efficient than (twisted) Edwards.
- · Covers all curves.

Reminder: $y^2 = x^3 + ax + b$ and b does not appeat in addition formulae.

ECDH attack scenario:

- · Alice sends point on different (insecure) curve with small subgroup.
- · Bob computes "shared key" in that small subgroup.
- · Alice learns "shared key" through brute force.
- Alice learns Bob's secret scalar modulo the order of the small subgroup.

Countermeasures:

- Check that input point is on the curve (functional tests will miss this!).
- Send compressed points (x, parity(y)).
 Decompression returns (x, y) on the curve or fails.
- Send only *x* (Montgomery ladder); but: *x* could still be on the "twist" of *E*. Make sure that the twist is also secure ("twist security").

Problem IV: Backdoors in standards?

Department of Mathematics and Computer Science (IMADA)

"I no longer trust the [NIST Elliptic Curves] constants. I believe the NSA has manipulated them through their relationships with industry."

- Bruce Schneier, 2013.

- There are concerns that NSA might have put a backdoor in Dual_EC_DRBG.
- More details at https://projectbullrun.org/dual-ec/.
- More details in a later lecture.

"I no longer trust the [NIST Elliptic Curves] constants. I believe the NSA has manipulated them through their relationships with industry."

— Bruce Schneier, 2013.

- Constants of NIST curves (and other standards) have been obtained by hashing random values.
- No-backdoor claim: We know the preimages.
- Possible attack if you know a class of vulnerable curves: Generate random seeds until you have found a vulnerable (and seemingly secure) curve.
- Fact: There are no known insecurities of NIST curves.
- Fact: There is no proof that there are no intentional vulnerabilities in NIST curves.
- For more details, see BADA55 elliptic curves: http://bada55.cr.yp.to/.

Choosing a safe curve:

Overview of various elliptic curves and thorough security analysis by Bernstein and Lange:

https://safecurves.cr.yp.to/

(Doesn't list cofactor-1 curves, so best to combine with Ristretto.)

Point representation and arithmetic:

Collection of elliptic-curve shapes, point representations and group-operation formulas by Bernstein and Lange:

https://www.hyperelliptic.org/EFD/

