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* Let G be a cyclic, finite, abelian Group (written additively) and
let P be a generator of G.
+ Alice chooses random a € {0, ..., |G| — 1}, computes aP, sends to Bob.
+ Bob chooses random b € {0, ..., |G| — 1}, computes bP, sends to Alice.
Alice computes joint key a(bP).
» Bob computes joint key b(aP).
+ Discrete logarithm problem (DLP) in G: given kP € G and P, find k.
» Solving the DLP breaks security of Diffie-Hellman.

Groups with hard DLP:

+ Traditional answer: Z; with large prime-order subgroup.

* Modern answer: Elliptic curve over I, with large prime-order subgroup.

» Sophisticated answer (not in this lecture): hyperelliptic curves of genus 2.
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Typical view on elliptic curves:

Definition:

Let K be a field and let a4, a,, a3, a4, as € K.
Then the following equation defines an
elliptic curve &:

E:y? +aixy +asy = x>+ axx? + asx + as

(if the discriminant A is not equal to zero).

This equation is called the Weierstrass form
of an elliptic curve.
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Definition: 2|
Let K be a field and let a4, a,, a3, a4, as € K.
Then the following equation defines an 14

elliptic curve &:

E:y? +axy +asy = x>+ axx® + agx + ag 2 _ 1 2

(if the discriminant A is not equal to zero).

This equation is called the Weierstrass form Y
of an elliptic curve.
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Characteristic # 2, 3:
If char(K) # 2,3 (e.g., K =Fp,p > 3)
we can use a simplified equation:

E:y =x*+ax+b
Characteristic 2:

If char(K) = 2 (e.g., K = Fn) we can
(usually) use a simplified equation:

Eyl+xy=x3+ax’>+b
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Setup for cryptography:
» Choose K =T
+ Consider the set of F4-rational points:

E(Fq) = {(x,y) € Fg x Fq : y? + arxy + azy = x> + axx® + agx + ag} U {0}

* The element O is the “point at infinity”.
» This set forms a group (together with addition law).
* Order of this group: |E(Fq)| =~ |Fq|
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Example curve: y? = x* — x over F;

Graph of E over [F4:
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Group Law

3

Example curve: y? = x* — x over R

Graph of E over R:
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Addition of Points:
Add points P and Q:

» Compute line through the two points.

¢ Determine third intersection
T = (x7,y7) with the elliptic curve.

* Result of the addition:
P+ Q= (xr,—yr).
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Example curve: y? = x* — x over R
Graph of E over R: Doubling of Points:

Double the point P:

* Compute Compute the tangent on P.

¢ Determine second intersection
T = (xr, yr) with the elliptic curve.

* Result of the doubling:
2P = (x7,—Yy7)
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Group Law

Example curve: y? = x

3

Graph of E over [F4:
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» Compute line through the two points.

¢ Determine third intersection
T = (x7,y7) with the elliptic curve.

* Result of the addition:

P+ Q= (xr,—yr).
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Group Law

= x% — x over F

Example curve: y?

Doubling of Points:

Graph of E over [F4:
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Curve equation: y?> =x3 +ax +b

Point addition:

P= (XPyP)a Q= (XQ7yQ)
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Curve equation: y?> =x3 +ax +b

Point addition: y=XM+b
_Ya—VYpP
P = (xpyp), Q = (Xa, Ya) A=2—F
T Q—Xp
2,
Yp=Xxp +b
" b=yp— Axp

Yy=XMX+Yypr—Xp

’y:/\(x—xP)qup‘

(/\(x—xp)—&—yp)2 =x>+ax+b

X322 (a+2)2xp—2)\yp)x+b—(A\xp—yp)? = 0
8/22
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Curve equation: y?> =x3 +ax +b

Point addition: Vieta’s formula:

P(x) = anX" + an_1X"" '+ ... a;x + ap
P= (XPyP)a Q = (XQ7yQ)

2

T

Forroots ry,rs,...,r, we have:

an—1
R R
an

Xp + Xq + X7 = \?

XT:XR:AZ—XP—XQ
Line equation:
y1 = MNXT —Xp) + yP

YR=—Y1 = AMXp —XR) — ¥pP
SDU<&
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Curve equation: y?> =x3 +ax +b

Point addition:
P= (XPyP)a Q = (XQ7yQ)
— P+ Q=R = (xgr,yr) with

2
Xp = Ya—Jyp —Xp - Xaq
XqQ — Xp

_(Ya—YP B B
YR—<XQ_XP)(XP XR) — Yp
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Curve equation: y?> =x3 +ax +b

Point addition: Point doubling:

P = (xpyp), Q = (Xa: ¥a) P = (xpyp)

— P+ Q=R = (xr, yr) with — 2P = (xg, yr) with

2 2
_(Ya—YP\" _ (3x3+a
e (Xo - XP) e "= < o ) 2
Ya— P 2
=(—7/—— ) (Xp —XR) — 3xg+a
YR <xQ—xP)( P —XR) — YP YR = ( gyp )(xP—xR)—yp
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* Neutral element is O.

* Inverse of a point (x,y) is (x, —y).

» Note: Formulas don’t work for P + (—P) and also don’t work for O.
* Need to distinguish these cases!

+ “Uniform” addition law in Hisil's Ph.D. thesis', Section 5.5.2:

» Move special cases to other points.
* Not safe to use on arbitrary input points!

» Formulas for curves over F,« look slightly different, but same special cases.

Thttp://eprints.qut.edu.au/33233/
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Finding a Suitable Curve and Computer Science (IMADA)
Security requirements for ECC: Finding a curve:
* ¢ = |E(Fq4)| must have large + Fix finite field I of suitable size.
prime-order subgroup. « Fix curve parameter a
* For n bits of security we need 2n-bit (quite common: a = —3).
prime-order subgroup. * Pick curve parameter b until E fulfills
* It must be impossible to transfer desired properties.

DLP to less secure groups:

* ¢ must not be equal to q.
+ We need ¢ | g* — 1 for large k.

* This requires efficient “point counting”.

* This requires efficient factorization or
primality proving.
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“The nice thing about standards is that you have so many to choose from.”
— Andrew S. Tanenbaum

» Various standardized curves, most well-known: NIST curves:

» Big-prime field curves with 192, 224, 256, 384, and 521 bits.
 Binary curves with 163, 233, 283, 409, and 571 bits.
 Binary Koblitz curves with 163, 233, 283, 409, and 571 bits.

« SECG curves (Certicom), prime-field and binary curves.

* Brainpool curves (BSI), only prime-field curves.

+ FRP256v1 (ANSSI), one prime-field curve (256 bits).

» Curve25519 (Bernstein; RFC 7748, FIPS 186-5 draft 2019), prime-field curve.
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Binary vs. Big Prime

Curves over big-prime fields:

» Many fields of a given size
= many curves.

« Efficient in software (can use
hardware multipliers).

« Less efficient in hardware.

SDU<&
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Curves over binary fields:

Important for security:
Exponent k of Fx has to be prime.

Not many fields
(not that many curves).

More efficient in hardware.

Efficient in software only on some
microarchitectures.

Hard to implement securely in
software on some other
microarchitectures.
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» Choose security level (e.g., 128 bits).

» Decide whether you want binary or big-prime field arithmetic; let’'s say big prime.
* Pick corresponding standard curve, e.g., NIST-P256.

* Implement field arithmetic.

» Implement ECC addition and doubling.

* Implement scalar multiplication (“double and add” — next lecture).

* You’re done with BAD (!) ECDH software.
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* Adding P = (xp, yp) and Q = (Xq, ¥q) needs an inversion in Fy.
* Inversions are expensive.
+ Constant-time inversions are even more expensive.

Solution — projective coordinates:
» Store fractions of elements of F, invert only once at the end.
* Represent points in projective coordinates:
P=(Xp:Yp:Zp)withxp =Xp/Zp and yp = Yp/Zp.
The point (1: 1 : 0) is the point at infinity.
+ Also possible — weighted projective coordinates:
« Jacobian coordinates: P = (Xp : Yp : Zp) with xp = Xp/Z2 and yp = Yp/Z3.

+ Lopez-Dahab coordinates: P = (Xp : Yp : Zp) with xp = Xp/Zp and yp = Yp/Z2.
(for binary curves)

* Important: Never send projective representation, always convert to affine!
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Problem Il: Group-Law Special Cases

Addition of P + Q: Doubling P:

If P = O return Q. * If P= 0O return P.
Else if Q = O return P.

Else if P = Q call doubling routine.
Else if P = —Q return O.

Else use addition formulas.

* Elseif yp = O return O.

* Else use doubling formulas.

+ Constant-time implementations of this are hard.

Good news: Can avoid the checks when computing k - P and k < |E(FFg)|.
Bad news: Side-channel countermeasures use k > |E(Fy)|.

More bad news: Doesn’t work for multi-scalar multiplication (next lecture).
Baseline: Simple implementations are likely to be wrong or insecure!

SDU
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+ Use Montgomery curve: Ey : By? = x3 + Ax? + x.
» Use x-coordinate-only differential addition chain (“Montgomery ladder”, next lecture).
» Advantages:
* Works on all inputs, no special cases.
» Very regular structure, easy to protect against timing attacks.
* Point compression/decompression for free.
» Easy to implement, harder to screw up in hard-to-detect ways.
» Simple implementations are likely to be correct and secure.
» Disadvantages:
* Not all curves can be converted to Montgomery shape.
» Always have a cofactor of at least 4.
» Ladders on general Weierstrass curves are much less efficient.
* We only get the x coordinate of the result, tricky for signatures.
» Can reconstruct y, but that involves some additional cost.
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Edwards, 2007: New form for elliptic curves (“Edwards curves”).

Bernstein, Lange, 2007: Very fast addition and doubling on these curves.

Bernstein, Birkner, Joye, Lange, Peters, 2008:
Generalize the idea to “twisted Edwards curves”.
+ Core advantage of (twisted) Edwards curves — complete group law:

* No need to handle special cases.
* No “point at infinity” to work with.

» Can speed up doubling, but addition formulas work for P + P.

Efficient transformation from Weierstrass to (twisted) Edwards only for some curves.
« Always efficient: Transformation between Montgomery and twisted Edwards curves.

» Again: Simple implementations are likely to be correct and secure.

Disadvantage: Always have a cofactor of at least 4.
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So, what's the deal with the cofactor?

M.'MONERO community Crowdfunding  Vulnerability Re

Get Started - Downloads Blog Comn

Disclosure of a Major Bug in CryptoNote Based
Currencies

Overview

In Monero we've discovered and patched a critical bug that affects all CryptoNote-
based cryptocurrencies, and allows for the creation of an unlimited number of coins
in a way that is undetectable to an observer unless they know about the fatal flaw

and can search for it.

SDU~

Department of Mathematics
and Computer Science (IMADA)

» Protocols need to be careful to
avoid subgroup attacks.

* Monero screwed this up, which
allowed double-spending.

» Elegant solution: “Ristretto”
encoding based on Hamburg'’s
“Decaf”, see:
https://ristretto.group/.
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Solution |I.C: Complete group law on Weierstrass curves. e "0 ccince (Maba)

* Bosma, Lenstra, 1995: Complete group law for Weierstrass curves.

» Problem: Extremely inefficient.

* Renes, Costello, Batina, 2016: Fast complete group law for Weierstrass curves.
* Less efficient than (twisted) Edwards.

* Covers all curves.
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Problem Ill: Wrong-Curve Attacks

Reminder: y? = x3 + ax + b and b does not appeat in addition formulae.
ECDH attack scenario:
« Alice sends point on different (insecure) curve with small subgroup.
» Bob computes “shared key” in that small subgroup.
« Alice learns “shared key” through brute force.

« Alice learns Bob’s secret scalar modulo the order of the small subgroup.

Countermeasures:
» Check that input point is on the curve (functional tests will miss this!).

+ Send compressed points (x, parity(y)).
Decompression returns (x, y) on the curve or fails.

« Send only x (Montgomery ladder); but: x could still be on the “twist” of E.
Make sure that the twist is also secure (“twist security”).
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“l no longer trust the [NIST Elliptic Curves] constants. | believe the NSA has ma-

nipulated them through their relationships with industry. ”
— Bruce Schneier, 2013.

» There are concerns that NSA might have put a backdoor in Dual_ EC_DRBG.
* More details at https://projectbullrun.org/dual-ec/.
» More details in a later lecture.
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Problem IV: Backdoors in standards? and Computer Science (IMADA)

“l no longer trust the [NIST Elliptic Curves] constants. | believe the NSA has ma-
nipulated them through their relationships with industry. ”
— Bruce Schneier, 2013.

» Constants of NIST curves (and other standards) have been obtained by hashing
random values.

* No-backdoor claim: We know the preimages.

+ Possible attack if you know a class of vulnerable curves: Generate random seeds
until you have found a vulnerable (and seemingly secure) curve.

» Fact: There are no known insecurities of NIST curves.
» Fact: There is no proof that there are no intentional vulnerabilities in NIST curves.

* For more details, see BADA55 elliptic curves: http://bada55.cr.yp.to/.
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Choosing a safe curve:
Overview of various elliptic curves and thorough security analysis by Bernstein and Lange:

https://safecurves.cr.yp.to/

(Doesn't list cofactor-1 curves, so best to combine with Ristretto.)

Point representation and arithmetic:
Collection of elliptic-curve shapes, point representations and group-operation formulas by
Bernstein and Lange:

https://www.hyperelliptic.org/EFD/
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