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Diffie-Hellman

• Let G be a cyclic, finite, abelian Group (written additively) and

let P be a generator of G.
• Alice chooses random a ∈ {0, . . . , |G| − 1}, computes aP, sends to Bob.
• Bob chooses random b ∈ {0, . . . , |G| − 1}, computes bP, sends to Alice.
• Alice computes joint key a(bP).

• Bob computes joint key b(aP).

• Discrete logarithm problem (DLP) in G: given kP ∈ G and P, find k.

• Solving the DLP breaks security of Diffie-Hellman.

Groups with hard DLP:

• Traditional answer: Z∗
p with large prime-order subgroup.

• Modern answer: Elliptic curve over Fq with large prime-order subgroup.

• Sophisticated answer (not in this lecture): hyperelliptic curves of genus 2.
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Typical view on elliptic curves:

Definition:

Let K be a field and let a1,a2,a3,a4,a6 ∈ K .

Then the following equation defines an

elliptic curve E :

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

(if the discriminant ∆ is not equal to zero).

This equation is called the Weierstrass form

of an elliptic curve.

Characteristic 6= 2,3:

If char(K) 6= 2,3 (e.g., K = Fp,p > 3)

we can use a simplified equation:

E : y2 = x3 + ax + b

Characteristic 2:

If char(K) = 2 (e.g., K = F2n ) we can
(usually) use a simplified equation:

E : y2 + xy = x3 + ax2 + b
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Rational Points

Setup for cryptography:

• Choose K = Fq.

• Consider the set of Fq-rational points:

E(Fq) = {(x, y) ∈ Fq × Fq : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6} ∪ {O}

• The element O is the “point at infinity”.

• This set forms a group (together with addition law).

• Order of this group: |E(Fq)| ≈ |Fq|
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Group Law

Example curve: y2 = x3 − x over F71

Graph of E over F71:
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Group Law

Example curve: y2 = x3 − x over R

Graph of E over R:
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Addition of Points:

Add points P and Q:

• Compute line through the two points.

• Determine third intersection

T = (xT , yT ) with the elliptic curve.

• Result of the addition:

P +Q = (xT ,−yT ).
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Doubling of Points:

Double the point P:

• Compute Compute the tangent on P.

• Determine second intersection

T = (xT , yT ) with the elliptic curve.

• Result of the doubling:

2P = (xT ,−yT ).
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Group law in formulas:

Curve equation: y2 = x3 + ax + b

Point addition:

P = (xPyP),Q = (xQ, yQ)

→ P +Q = R = (xR, yR) with

xR =

(
yQ − yP

xQ − xP

)2

− xP − xQ

yR =

(
yQ − yP

xQ − xP

)
(xP − xR)− yP

Point doubling:

P = (xPyP)

→ 2P = (xR, yR) with

xR =

(
3x2P + a

2yP

)2

− 2xP

yR =

(
3x2P + a

2yP

)
(xP − xR)− yP
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More Weierstrass curve group law:

• Neutral element is O.
• Inverse of a point (x, y) is (x,−y).
• Note: Formulas don’t work for P + (−P) and also don’t work for O.
• Need to distinguish these cases!

• “Uniform” addition law in Hışıl’s Ph.D. thesis1, Section 5.5.2:

• Move special cases to other points.

• Not safe to use on arbitrary input points!

• Formulas for curves over F2k look slightly different, but same special cases.

1http://eprints.qut.edu.au/33233/
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Finding a Suitable Curve

Security requirements for ECC:

• ` = |E(Fq)| must have large
prime-order subgroup.

• For n bits of security we need 2n-bit

prime-order subgroup.

• It must be impossible to transfer

DLP to less secure groups:

• ` must not be equal to q.

• We need ` | qk − 1 for large k.

Finding a curve:

• Fix finite field Fq of suitable size.

• Fix curve parameter a

(quite common: a = −3).
• Pick curve parameter b until E fulfills

desired properties.

• This requires efficient “point counting”.

• This requires efficient factorization or

primality proving.
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Standard Curves

“The nice thing about standards is that you have so many to choose from.”

– Andrew S. Tanenbaum

• Various standardized curves, most well-known: NIST curves:

• Big-prime field curves with 192, 224, 256, 384, and 521 bits.

• Binary curves with 163, 233, 283, 409, and 571 bits.

• Binary Koblitz curves with 163, 233, 283, 409, and 571 bits.

• SECG curves (Certicom), prime-field and binary curves.

• Brainpool curves (BSI), only prime-field curves.

• FRP256v1 (ANSSI), one prime-field curve (256 bits).

• Curve25519 (Bernstein; RFC 7748, FIPS 186-5 draft 2019), prime-field curve.
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Binary vs. Big Prime

Curves over big-prime fields:

• Many fields of a given size

⇒ many curves.

• Efficient in software (can use

hardware multipliers).

• Less efficient in hardware.

Curves over binary fields:

• Important for security:

Exponent k of Fpk has to be prime.

• Not many fields

(not that many curves).

• More efficient in hardware.

• Efficient in software only on some

microarchitectures.

• Hard to implement securely in

software on some other

microarchitectures.
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Putting it all together:

• Choose security level (e.g., 128 bits).

• Decide whether you want binary or big-prime field arithmetic; let’s say big prime.

• Pick corresponding standard curve, e.g., NIST-P256.

• Implement field arithmetic.

• Implement ECC addition and doubling.

• Implement scalar multiplication (“double and add” – next lecture).

• You’re done with BAD (!) ECDH software.
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Problem I: Inversion

• Adding P = (xP, yP) and Q = (xQ, yQ) needs an inversion in Fq.

• Inversions are expensive.

• Constant-time inversions are even more expensive.

Solution — projective coordinates:

• Store fractions of elements of Fq, invert only once at the end.

• Represent points in projective coordinates:

P = (XP : YP : ZP) with xP = XP/ZP and yP = YP/ZP.

• The point (1 : 1 : 0) is the point at infinity.

• Also possible — weighted projective coordinates:

• Jacobian coordinates: P = (XP : YP : ZP) with xP = XP/Z
2
P and yP = YP/Z

3
P.

• López-Dahab coordinates: P = (XP : YP : ZP) with xP = XP/ZP and yP = YP/Z
2
P.

(for binary curves)

• Important: Never send projective representation, always convert to affine!
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Problem II: Group-Law Special Cases

Addition of P +Q:

• If P = O return Q.

• Else if Q = O return P.

• Else if P = Q call doubling routine.

• Else if P = −Q return O.
• Else use addition formulas.

Doubling P:

• If P = O return P.

• Else if yP = 0 return O.
• Else use doubling formulas.

• Constant-time implementations of this are hard.

• Good news: Can avoid the checks when computing k · P and k < |E(Fq)|.
• Bad news: Side-channel countermeasures use k > |E(Fq)|.
• More bad news: Doesn’t work for multi-scalar multiplication (next lecture).

• Baseline: Simple implementations are likely to be wrong or insecure!
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Solution II.A: Montgomery Curves

• Use Montgomery curve: EM : By2 = x3 + Ax2 + x.

• Use x-coordinate-only differential addition chain (“Montgomery ladder”, next lecture).

• Advantages:

• Works on all inputs, no special cases.

• Very regular structure, easy to protect against timing attacks.

• Point compression/decompression for free.

• Easy to implement, harder to screw up in hard-to-detect ways.

• Simple implementations are likely to be correct and secure.

• Disadvantages:

• Not all curves can be converted to Montgomery shape.

• Always have a cofactor of at least 4.

• Ladders on general Weierstrass curves are much less efficient.

• We only get the x coordinate of the result, tricky for signatures.

• Can reconstruct y, but that involves some additional cost.
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Solution II.B: (Twisted) Edwards Curves

• Edwards, 2007: New form for elliptic curves (“Edwards curves”).

• Bernstein, Lange, 2007: Very fast addition and doubling on these curves.

• Bernstein, Birkner, Joye, Lange, Peters, 2008:

Generalize the idea to “twisted Edwards curves”.

• Core advantage of (twisted) Edwards curves — complete group law:

• No need to handle special cases.

• No “point at infinity” to work with.

• Can speed up doubling, but addition formulas work for P + P.

• Efficient transformation from Weierstrass to (twisted) Edwards only for some curves.

• Always efficient: Transformation between Montgomery and twisted Edwards curves.

• Again: Simple implementations are likely to be correct and secure.

• Disadvantage: Always have a cofactor of at least 4.
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So, what’s the deal with the cofactor?

• Protocols need to be careful to

avoid subgroup attacks.

• Monero screwed this up, which

allowed double-spending.

• Elegant solution: “Ristretto”

encoding based on Hamburg’s

“Decaf”, see:

https://ristretto.group/.
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Solution II.C: Complete group law on Weierstrass curves.

• Bosma, Lenstra, 1995: Complete group law for Weierstrass curves.

• Problem: Extremely inefficient.

• Renes, Costello, Batina, 2016: Fast complete group law for Weierstrass curves.

• Less efficient than (twisted) Edwards.

• Covers all curves.
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Problem III: Wrong-Curve Attacks

Reminder: y2 = x3 + ax + b and b does not appeat in addition formulae.

ECDH attack scenario:

• Alice sends point on different (insecure) curve with small subgroup.

• Bob computes “shared key” in that small subgroup.

• Alice learns “shared key” through brute force.

• Alice learns Bob’s secret scalar modulo the order of the small subgroup.

Countermeasures:

• Check that input point is on the curve (functional tests will miss this!).

• Send compressed points (x,parity(y)).

Decompression returns (x, y) on the curve or fails.

• Send only x (Montgomery ladder); but: x could still be on the “twist” of E.

Make sure that the twist is also secure (“twist security”).
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Problem IV: Backdoors in standards?

“I no longer trust the [NIST Elliptic Curves] constants. I believe the NSA has ma-

nipulated them through their relationships with industry. ”

— Bruce Schneier, 2013.

• There are concerns that NSA might have put a backdoor in Dual_EC_DRBG.

• More details at https://projectbullrun.org/dual-ec/.

• More details in a later lecture.
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Problem IV: Backdoors in standards?

“I no longer trust the [NIST Elliptic Curves] constants. I believe the NSA has ma-

nipulated them through their relationships with industry. ”

— Bruce Schneier, 2013.

• Constants of NIST curves (and other standards) have been obtained by hashing

random values.

• No-backdoor claim: We know the preimages.

• Possible attack if you know a class of vulnerable curves: Generate random seeds

until you have found a vulnerable (and seemingly secure) curve.

• Fact: There are no known insecurities of NIST curves.

• Fact: There is no proof that there are no intentional vulnerabilities in NIST curves.

• For more details, see BADA55 elliptic curves: http://bada55.cr.yp.to/.
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Further Information

Choosing a safe curve:

Overview of various elliptic curves and thorough security analysis by Bernstein and Lange:

https://safecurves.cr.yp.to/

(Doesn’t list cofactor-1 curves, so best to combine with Ristretto.)

Point representation and arithmetic:

Collection of elliptic-curve shapes, point representations and group-operation formulas by

Bernstein and Lange:

https://www.hyperelliptic.org/EFD/
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