
Cryptographic Engineering

SCA Countermeasures

Ruben Niederhagen

(based on content by Norman Lahr and Richard Petri)

Department of Mathematics and Computer Science (IMADA)

Introduction

• (Power) leakage depends on the processing of intermediate values.

• The goal of countermeasures is …

• to avoid or

• to reduce the dependencies.

• Classes of countermeasures are

• hiding and

• masking or blinding.

Department of Mathematics

and Computer Science (IMADA)

1/31

Countermeasures

Hiding

Introduction

• The goal of hiding is to break the link between the power consumption and the

processed data values.

• The execution of the cryptographic algorithm computes the same intermediate value

as before.

• Hiding makes it difficult to find (hides) leakage in the power traces.

Department of Mathematics

and Computer Science (IMADA)

2/31

Ideal Goal

Ideal Properties

The power consumption is independent from the intermediate values if the devices

consumes:

• random amounts or

• equal amounts

of power in each clock cycle.

Department of Mathematics

and Computer Science (IMADA)

3/31

Types of Hiding Techniques

• Prefect randomness or equality cannot be reached in practice.

• However, there are solution which get close to this.

• Hiding can be applied in two dimensions:

• the time dimension and

• the amplitude dimension.

Department of Mathematics

and Computer Science (IMADA)

4/31

Time Dimension

Hiding in the time dimension randomizes the power consumption by the execution of

operations at different moments in time. This:

• breaks the alignment property of traces for DPA,

• increases the amount of required traces, and

• decreases the performance.

⇒ A suitable compromise is required.

Department of Mathematics

and Computer Science (IMADA)

5/31

Time Dimension — Mechanisms

The security of the hiding mechanisms in the time dimension depends on the randomness

and the undetectability.

• Software:

• Random insertion of operations and

• shuffling of operations

(requires independence of shuffled operations (e.g. AES S-box lookups).

• Hardware:

• Random insertion of cycles

(requires duplication of registers for random data execution),

• skipping clock pulses, and

• random variation of clock frequency.

Department of Mathematics

and Computer Science (IMADA)

6/31

Example AES Shuffling

for (i = 0; i < 16; i++)
state[i] = sbox[state[i] ^ key[i]];

↓

int order[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
shuffle(order); /* Shuffles the order */
for (o = 0; o < 16; o++) {
int i = order[o];
state[i] = sbox[state[i] ^ key[i]];

}

Department of Mathematics

and Computer Science (IMADA)

7/31

Amplitude Dimension

In the hiding techniques using the amplitude dimension directly change the

power-consumption characteristics:

• Equalize or randomize the power consumption per clock cycle.

• Goal: lower the signal-to-noise ratio.

Equalize: Reduce the leakage signal 𝑉 𝑎𝑟(𝑃𝑒𝑥𝑝) → 0.
Randomize: Increase the noise 𝑉 𝑎𝑟(𝑃𝑠𝑤.𝑛𝑜𝑖𝑠𝑒 + 𝑃𝑒𝑙.𝑛𝑜𝑖𝑠𝑒) → ∞.

Department of Mathematics

and Computer Science (IMADA)

8/31

Amplitude Dimension — Mechanisms

• Software:

• Careful choice of instructions,

• avoidance of key-dependent (or related) conditional jumps and program flow patterns,

• avoidance of key-dependent memory addresses;

usage of, e.g., addresses with equal Hamming weights, and

• increase of parallel activities.

• Hardware:

• Filtering or regulation of the power consumption (supply),

• noise engine, and

• dual-rail precharge (DRP) logic on the logic gate design level.

Department of Mathematics

and Computer Science (IMADA)

9/31

Dual-Rail Precharge Logic

Dual-rail precharge (DRP) logic equalizes the power consumption in each clock cycle:

• Dual-rail logic: Duplicate wires and gates; add and compute the complementary sinal.

• Precharge logic: Split logic computation into precharging and evaluation phases.

The combination of both reduces leakage from power consumption of buses and logic.

Department of Mathematics

and Computer Science (IMADA)

10/31

Dual-Rail Logic

Single-Rail Logic

SR Gate

𝑎

𝑏

𝑞

Example

𝑎

𝑏
and 𝑞

Dual-Rail Logic

DR Gate

𝑎
𝑎
𝑏
𝑏

𝑞

𝑞

Example

𝑎
𝑎
𝑏
𝑏

and

or

𝑞

𝑞

Department of Mathematics

and Computer Science (IMADA)

11/31

Precharge Logic

• Switching (0 → 1, 1 → 0) can be differentiated from non-switching (0 → 0, 1 → 1).
• Solution: Wave Dynamic Differential Logic (WDDL) and other variants.

B. DPL Built-in DFA Resistance

Single bit faults are inefficient against DPL because they

turn a VALID data into a NULL token, that propagates and

leads to a non exploitable error since it hides the faulted

value. This is the typical scenario described in the seminal

paper [3], introducing the intrinsic immunity of DPL against

some classes of DFA.

Highly multiple faults ((1, 0) ↔ (0, 1)) generate randomly

a large quantity of NULL values along with some more

unlikely but devastating bit-flips. However, as NULL values

are systematically propagated, they proliferate very quickly

after some combinatorial logic layers traversal. And as they

have the nice property to contaminate VALID values, the risky

coherent bit-flips (simultaneous 0
∗

→ 1 and 1
∗

→ 0 in one

dual-rail couple), they jam their propagation hopefully before

they reach the algorithm output. This absorption property is

all the more efficient as the number of NULL generated by

the multiple faults is high. Therefore, the only way to inject

a poisonous fault is to stress the circuit sufficiently enough to

have multiple faults, without nonetheless creating too many

faults so as to leave a chance for them not to be absorbed

during their percolation towards the outputs.

C. Vulnerabilities w.r.t. Side-Channel Attacks

Although perfectly sound at logical level, DPL ends up to be

concretely implemented in physical devices. Now, the logical

description of DPL ignores any timing and capacitance’s

notions.

Regarding the timing, two unbalance behaviors can occur.

On the way from the precharge to the evaluation, and vice-

versa, there can exist:

1) spurious transitions, referred to as glitches, that negate

the hypothesis of activity constantness, and

2) timing-dependent evaluation.

Also the implicit hypothesis that all bit toggles are equiva-

lent does not hold, for at least three reasons. Either the place-

and-route tool has not balanced the pairs, or the manufacturing

process is variable, or the attacker possesses a probe able to

preferentially measure the signal emanating from one wire of

a pair.

Eventually, we warn that second-order mismatches shall

also be considered. Indeed, the glitches concern one net,

whereas the timing-dependent evaluation and the unbalance

are relative quantities within a dual-rail pair. The cross-

coupling is another issue, still unexploited but probably also

endangering the security of DPL designs.

The next section III studies how these latent flaws have

been addressed by some existing DPL logics, whereas the

section IV illustrates technology-dependent optimizations or

innovative solutions.

III. DPL FAMILIES BASED ON STANDARD CELLS

A. WDDL

Wave Dynamic Differential Logic (WDDL [4]) meets all the

logical constraints of a DPL. The initial state is propagated

Precharge Evaluation

WDDL AND

bt

bf

sf

af

at

∆t1 ∆t2

st

PRE/EV AL

stT
at

bt

sfF
bf

af

Figure 1. WDDL AND gate with the Early Evaluation flaw.

by a wave of (0, 0) couples through the netlist thanks to

the use solely of positive gates. The fact that exactly one

half of the gates evaluate results from the duality between

the true and false networks. This duality also make WDDL

especially area-efficient: each gate receives only one half of

the dual-rail signals. Put differently, WDDL is a separable

logic, where the instances of each dual network are not subject

to a doubling overhead in terms of fan in. In addition, the

positivity of WDDL ensures the absence of glitches in the

complete netlist. Notice that WDDL with gates propagating

the NULL spacer but without being positive is easily broken

in practice, as explained in [5]. However, as shown in [6],

[7], WDDL is prone to early evaluation and early precharge.

The Early Evaluation (EE) effect comes from the difference of

delay between two variables of a same gate. Fig. 1 illustrates

the EE flaw when variable a is in advance to variable b. In

this case the output does not switch at the same time.

Moreover, the dual networks are not necessarily balanced,

since the transistor structure of x 7→ f(x) and of x 7→ f(x)
differ. Those two issues have made possible some attacks

on WDDL circuits, as described for instance by the authors

of WDDL themselves in an ASIC [8] or independently in

an FPGA [9]. Therefore, either incremental improvements or

radically novel strategies have shown up.

B. MDPL

Masked Dual-rail with Precharge Logic (MDPL [10]) is

an attempt to fix the otherwise unbalancedness of WDDL.

The assumption is that, in some conditions, it can be difficult

to constrain a router to balance the differential interconnect.

Indeed, the two solutions available in the literature, namely the

fat wire [11] and the backend duplication [12] methods, apply

primarily to ASICs. The transposition to FPGA is possible,

albeit with less fine-grain control over the result [13]. For

this reason, MDPL proposes to swap the true and the false

routes randomly, so as to emancipate from the fatal routing

unbalance. By the same token, it makes up for the structural

unbalance of the dual pair of gates. The only gates involved

in the logic are majority functions, both for the true and the

false networks. Nonetheless, MDPL fails to provide a solution

to the early evaluation and precharge of WDDL.

2009 International Conference on Signals, Circuits and Systems

-2-

Authorized licensed use limited to: University of Southern Denmark. Downloaded on May 04,2021 at 10:07:08 UTC from IEEE Xplore. Restrictions apply.

Department of Mathematics

and Computer Science (IMADA)

12/31

Countermeasures

Masking (Blinding)

Introduction

Masking makes the power consumption independent of the processed intermediate value

by randomizing the intermediate value(s).

• It does not affect the original (data-dependent) power characteristics.

• An intermediate value is concealed by a random value, called mask: 𝑣𝑚 = 𝑣 ∘ 𝑚.

• The mask 𝑚 is unknown to the attacker.

• A mask on public data is removed after the computation process.

• The application in context of asymmetric schemes is called blinding (cf. timing slides).

Department of Mathematics

and Computer Science (IMADA)

13/31

Boolean vs. Arithmetic Masking

The masking scheme must fit to the crypto scheme:

Boolean Masking

The mask 𝑚 is applied using an

exclusive-or operation:

𝑣𝑚 = 𝑣 ⊕ 𝑚

Arithmetic Masking

The mask 𝑚 is applied using an arithmetic

operation (addition or multiplication):

𝑣𝑚 = 𝑣 + 𝑚 mod 𝑛
𝑣𝑚 = 𝑣 × 𝑚 mod 𝑛

Department of Mathematics

and Computer Science (IMADA)

14/31

Linear vs. Non-linear Functions

• The choice of the masking scheme depends on the cryptographic algorithm.

• Cryptographic algorithms use linear and non-linear functions.

• Linear: 𝑓(𝑥 ∘ 𝑦) = 𝑓(𝑥) ∘ 𝑓(𝑦).
• Non-linear: 𝑓(𝑥 ∘ 𝑦) ≠ 𝑓(𝑥) ∘ 𝑓(𝑦).

AES S-box Operation

The S-box operation is based on operation on the multiplicative inverse of finite field

element 𝑓(𝑥) = 𝑥−1. Therefore, boolean masking is not applicable:

𝑆(𝑥 ⊕ 𝑚) ≠ 𝑆(𝑥) ⊕ 𝑆(𝑚).

However, multiplicative masking can be applied due to:

𝑓(𝑥 × 𝑚) = (𝑥 × 𝑚)−1 = 𝑓(𝑥) × 𝑓(𝑚).

Department of Mathematics

and Computer Science (IMADA)

15/31

Secret Sharing

• The intermediate value 𝑣 is represented by the two shares (𝑣𝑚, 𝑚).
• The knowledge of just one share does not reveal 𝑣.
• Masking prevents 1st-order DPA attacks if 𝑣𝑚 is pairwise independent to 𝑣 and 𝑚.

• Multiple masks can be used to prevent 𝑛-th order DPA.

• Several masks leads to higher computation and memory usage.

Department of Mathematics

and Computer Science (IMADA)

16/31

Example Masking of a Linear XOR Gate

(𝑧𝑚3
⊕ 𝑚3) ← (𝑥𝑚1

⊕ 𝑚1) ⊕ (𝑦𝑚2
⊕ 𝑚2)

(𝑧𝑚3
⊕ 𝑚3) ← (𝑥𝑚1

⊕ 𝑦𝑚2
) ⊕ (𝑚1 ⊕ 𝑚2)

𝑧𝑚3
← 𝑥𝑚1

⊕ 𝑦𝑚2
, 𝑚3 ← 𝑚1 ⊕ 𝑚2

• Let’s construct an XOR operation with two shares.

• XOR operation can be applied to the shares individually

(if the operands are independent).

Department of Mathematics

and Computer Science (IMADA)

17/31

Example Masking of a Non-linear AND Gate

(𝑧𝑚3
⊕ 𝑚3) ← (𝑥𝑚1

⊕ 𝑚1) ∧ (𝑦𝑚2
⊕ 𝑚2)

(𝑧𝑚3
⊕ 𝑚3) ← (𝑥𝑚1

∧ 𝑦𝑚2
) ⊕ (𝑥𝑚1

∧ 𝑚2) ⊕ (𝑚1 ∧ 𝑦𝑚2
) ⊕ (𝑚1 ∧ 𝑚2)

𝑠0 ← 𝑥𝑚1
∧ 𝑦𝑚2

, 𝑠1 ← 𝑥𝑚1
∧

¬

𝑚2

𝑠2 ← 𝑚1 ∧ 𝑦𝑚2
, 𝑠3 ← 𝑚1 ∧

¬

𝑚2

𝑡0 ← 𝑠0 ⊕ 𝑚′, 𝑡1 ← 𝑠1 ⊕ 𝑚′

𝑧𝑚3
← 𝑡0 ⊕ 𝑠2, 𝑚3 ← 𝑡1 ⊕ 𝑠3

• Let’s construct an AND operation with two shares.

• Direct approach to constructing an AND gate with four output shares,

which are registered and recombined.

• Output must be uniform, requiring re-masking with a guard share 𝑚′.

• If we are careful, we can avoid this guard share. (This does NOT work repeatedly!)

Department of Mathematics

and Computer Science (IMADA)

18/31

Example Masking of a Non-linear AND Gate

(𝑧𝑚3
⊕ 𝑚3) ← (𝑥𝑚1

⊕ 𝑚1) ∧ (𝑦𝑚2
⊕ 𝑚2)

(𝑧𝑚3
⊕ 𝑚3) ← (𝑥𝑚1

∧ 𝑦𝑚2
) ⊕ (𝑥𝑚1

∧ 𝑚2) ⊕ (𝑚1 ∧ 𝑦𝑚2
) ⊕ (𝑚1 ∧ 𝑚2)

𝑠0 ← 𝑥𝑚1
∧ 𝑦𝑚2

, 𝑠1 ← 𝑥𝑚1
∨ ¬𝑚2

𝑠2 ← 𝑚1 ∧ 𝑦𝑚2
, 𝑠3 ← 𝑚1 ∨ ¬𝑚2

𝑡0 ← 𝑠0 ⊕ 𝑚′, 𝑡1 ← 𝑠1 ⊕ 𝑚′

𝑧𝑚3
← 𝑠0 ⊕ 𝑠1, 𝑚3 ← 𝑠2 ⊕ 𝑠3

• Let’s construct an AND operation with two shares.

• Direct approach to constructing an AND gate with four output shares,

which are registered and recombined.

• Output must be uniform, requiring re-masking with a guard share 𝑚′.

• If we are careful, we can avoid this guard share. (This does NOT work repeatedly!)

Department of Mathematics

and Computer Science (IMADA)

18/31

Example Masking on AES

• Analyze the operation of an AES implementation with regard to adding masks.

• Identify linear and non-linear functions.

• Intermediate values must be masked all the time.

• Example from Herbst et al., 2006, for software implementation.

Department of Mathematics

and Computer Science (IMADA)

19/31

Example Masking on AES

Analysis of the four AES Operations

• AddRoundKey: 𝑠 ⊕ 𝑘 ⇒ 𝑠 ⊕ (𝑘 ⊕ 𝑚) = (𝑠 ⊕ 𝑘) ⊕ 𝑚.

• SubBytes: Non-linear. Use a masked S-box table.

• ShiftRows: No effect if the same mask byte is used for all state bytes.

• MixColumns:

• Mixes the state bytes.

• Requires in- and output masks.

• Care must be taken to not unmask the intermediate values.

• Using a joint mask for each row performs well.

Department of Mathematics

and Computer Science (IMADA)

20/31

Example Masking on AES

Preparation

• Generate six random byte masks: 𝑚, 𝑚′ and 𝑚1, 𝑚2, 𝑚3, 𝑚4.

• Compute a masked S-box table 𝑆𝑚 for the chosen masks 𝑚 and 𝑚′ so that:

𝑆𝑚(𝑥 ⊕ 𝑚) = 𝑆(𝑥) ⊕ 𝑚′.

• Compute the output masks of MixColumns so that:

(𝑚′
1, 𝑚′

2, 𝑚′
3, 𝑚′

4) = MixColumns(𝑚1, 𝑚2, 𝑚3, 𝑚4).

Department of Mathematics

and Computer Science (IMADA)

21/31

Example Masking on AES

AES Round Masking

1. Plaintext/state is masked with (𝑚′
1, 𝑚′

2, 𝑚′
3, 𝑚′

4), 𝑚′
𝑖 for an entire row.

2. AddRoundKey: The round key is masked so that the masks change from

(𝑚′
1, 𝑚′

2, 𝑚′
3, 𝑚′

4) to 𝑚.

3. SubBytes: The lookup on 𝑆𝑚 changes the mask from 𝑚 to 𝑚′.

4. ShiftRows: All bytes are masked with byte 𝑚′. No influence.

5. Remasking before MixColumns: Change masks from 𝑚′ to (𝑚1, 𝑚2, 𝑚3, 𝑚4).
6. MixColumns: The masks are changed from (𝑚1, 𝑚2, 𝑚3, 𝑚4) to (𝑚′

1, 𝑚′
2, 𝑚′

3, 𝑚′
4).

⇒ Mask the final AddRoundKey such that it removes the mask in the last round.

Department of Mathematics

and Computer Science (IMADA)

22/31

Example Masking on AES

Initialization

𝑚′
1

𝑚′
2

𝑚′
3

𝑚′
4

𝑚′
1

𝑚′
2

𝑚′
3

𝑚′
4

𝑚′
1

𝑚′
2

𝑚′
3

𝑚′
4

𝑚′
1

𝑚′
2

𝑚′
3

𝑚′
4

𝑚′
1

⊕𝑚

𝑚′
2

⊕𝑚

𝑚′
3

⊕𝑚

𝑚′
4

⊕𝑚

𝑚′
1

⊕𝑚

𝑚′
2

⊕𝑚

𝑚′
3

⊕𝑚

𝑚′
4

⊕𝑚

𝑚′
1

⊕𝑚

𝑚′
2

⊕𝑚

𝑚′
3

⊕𝑚

𝑚′
4

⊕𝑚

𝑚′
1

⊕𝑚

𝑚′
2

⊕𝑚

𝑚′
3

⊕𝑚

𝑚′
4

⊕𝑚

⊕ ⊕

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6

𝑝7

𝑝8

𝑝9

𝑝10

𝑝11

𝑝12

𝑝13

𝑝14

𝑝15

𝑟𝑘0

𝑟𝑘1

𝑟𝑘2

𝑟𝑘3

𝑟𝑘4

𝑟𝑘5

𝑟𝑘6

𝑟𝑘7

𝑟𝑘8

𝑟𝑘9

𝑟𝑘10

𝑟𝑘11

𝑟𝑘12

𝑟𝑘13

𝑟𝑘14

𝑟𝑘15

State (plaintext) Round key

Department of Mathematics

and Computer Science (IMADA)

23/31

Example Masking on AES

Masks at the Beginning of a Round

𝑚′
1

𝑚′
2

𝑚′
3

𝑚′
4

𝑚′
1

𝑚′
2

𝑚′
3

𝑚′
4

𝑚′
1

𝑚′
2

𝑚′
3

𝑚′
4

𝑚′
1

𝑚′
2

𝑚′
3

𝑚′
4

𝑚′
1

⊕𝑚

𝑚′
2

⊕𝑚

𝑚′
3

⊕𝑚

𝑚′
4

⊕𝑚

𝑚′
1

⊕𝑚

𝑚′
2

⊕𝑚

𝑚′
3

⊕𝑚

𝑚′
4

⊕𝑚

𝑚′
1

⊕𝑚

𝑚′
2

⊕𝑚

𝑚′
3

⊕𝑚

𝑚′
4

⊕𝑚

𝑚′
1

⊕𝑚

𝑚′
2

⊕𝑚

𝑚′
3

⊕𝑚

𝑚′
4

⊕𝑚

Department of Mathematics

and Computer Science (IMADA)

24/31

Example Masking on AES

Masks after AddRoundKey

AddRoundKey: (𝑠𝑖 ⊕ 𝑚′
𝑗) ⊕ (𝑟𝑘𝑖 ⊕ 𝑚′

𝑗 ⊕ 𝑚)

𝑚

𝑚

𝑚

𝑚

𝑚

𝑚

𝑚

𝑚

𝑚

𝑚

𝑚

𝑚

𝑚

𝑚

𝑚

𝑚

Department of Mathematics

and Computer Science (IMADA)

25/31

Example Masking on AES

Masks after SubBytes (and ShiftRows)

SubBytes: 𝑆𝑚(𝑥 ⊕ 𝑚) = 𝑆(𝑥) ⊕ 𝑚′, ShiftRows

𝑚′

𝑚′

𝑚′

𝑚′

𝑚′

𝑚′

𝑚′

𝑚′

𝑚′

𝑚′

𝑚′

𝑚′

𝑚′

𝑚′

𝑚′

𝑚′

Department of Mathematics

and Computer Science (IMADA)

26/31

Example Masking on AES

Masks after Remasking

Remasking: 𝑚′[⊕𝑚′ ⊕ 𝑚𝑖] → 𝑚𝑖

𝑚1

𝑚2

𝑚3

𝑚4

𝑚1

𝑚2

𝑚3

𝑚4

𝑚1

𝑚2

𝑚3

𝑚4

𝑚1

𝑚2

𝑚3

𝑚4

Department of Mathematics

and Computer Science (IMADA)

27/31

Example Masking on AES

Masks after MixColumns

MixColumns: MixColumns(𝑚1, 𝑚2, 𝑚3, 𝑚4) → (𝑚′
1, 𝑚′

2, 𝑚′
3, 𝑚′

4)

𝑚′
1

𝑚′
2

𝑚′
3

𝑚′
4

𝑚′
1

𝑚′
2

𝑚′
3

𝑚′
4

𝑚′
1

𝑚′
2

𝑚′
3

𝑚′
4

𝑚′
1

𝑚′
2

𝑚′
3

𝑚′
4

Department of Mathematics

and Computer Science (IMADA)

28/31

Evaluation

• The previous masking resists 1st-order attacks.

• It drastically increases the required traces for an attack.

• The runtime roughly doubles with the countermeasure.

• Most cycles are spent on the precomputations.

→ Each AES operation requires new masks and thus new randomness.

Department of Mathematics

and Computer Science (IMADA)

29/31

Masking Pitfalls

• Mask re-usage or biased masks can be exploited.

• (SW) Order of operations is important.

• Compilers may change the order for better performance.

• Requires usage of special compilers/flags or of assembly directly.

• (HW) Parallel logic gates can leak information due to signal delays.

Department of Mathematics

and Computer Science (IMADA)

30/31

Countermeasures

Higher Order Attacks

General Description

Higher-order attacks use key hypothesis which are combinations of multiple points in the

power trace (joint leakage).

Second-order: Attack both shares of a secret value or two usages of the same mask.

• Set up a combined hypothesis, e.g., HW(𝑥𝑚 ⊕ 𝑚 = 𝑥) or HW(𝑥𝑚 ⊕ 𝑦𝑚 = 𝑥 ⊕ 𝑦).
• Preprocess traces:

• Identify the exact points of interest (occurrence of 𝑥𝑚 and 𝑚 or 𝑥𝑚 and 𝑦𝑚 respectively).

• If the points are unknown, investigate all pairs of possible points (quadratic cost).

• Combine the measurements on the pairs, e.g., using their product.

• Use standard DPA on preprocessed traces.

Department of Mathematics

and Computer Science (IMADA)

31/31

	Countermeasures
	Hiding

	Countermeasures
	Masking (Blinding)
	Higher Order Attacks

